考试大纲
本《数学分析》考试大纲适用于暨南大学数学学科各专业(基础数学、计算数学、概率论与数理统计、应用数学、运筹学与控制轮)硕士研究生入学考试。数学分析是大学数学系本科学生的最基本课程之一,也是大多数理工科专业学生的必修基础课。它的主要内容包括极限与连续、一元函数的微分学、一元函数的积分学、无穷级数、多元函数的微分学与积分学、含参变量积分。要求考生熟悉基本概念、掌握基本定理、有较强的运算能力和综合分析解决问题能力。
考试的基本要求
要求考生比较系统地理解数学分析的基本概念,掌握数学分析的基本理论、基本思想和方法,具有一定的综合运用所学的知识分析问题和解决问题的能力,以便为以后继续学习和从事科研奠定坚实的分析基础。
二、考试内容
1.极限与连续
(1)极限的ε-δ、ε-N定义及其证明;极限的性质及运算、无穷小量的概念及基本性质;
(2)函数的连续性及一致连续性概念,函数的不连续点类型,连续函数的性质的证明及其应用;
(3)上、下极限概念,实数集完备性的基本定理及其应用;
(4)二元函数的极限的定义及性质,重极限与累次极限概念,二元函数的连续性概念及性质;
(5)数列极限的计算,一元与二元函数极限的计算。
2.一元函数的微分学
(1)函数的导数与微分概念及其几何意义,函数的可导、可微与连续之间的关系;
(2)求函数(包括复合函数及分段函数)的各阶导数与微分;
(3)Rolle中值定理、Lagrange中值定理、Cauchy中值定理、Taylor定理及其应用;
(4)用导数研究函数的单调性、极值、最值和凸凹性;
(5)用洛必达法则求不定式极限。
3.一元函数的积分学
(1)不定积分的概念及不定积分的基本公式,换元积分法与分部积分法,求初等函数、有理函数和可化为有理函数的不定积分;
(2)定积分的概念,可积条件与可积函数类;
(3)定积分的性质,微积分学基本定理,定积分的换元积分法和分部积分法,积分第一、二中值定理及其应用;
(4)用定积分计算平面图形的面积、平面曲线的弧长、旋转体的体积、平行截面面积已知的立体体积、变力做功和物体的质量;
(5)反常积分的概念及性质,两类反常积分的比较判别法、阿贝耳判别法和狄
立克雷判别法,两类反常积分的计算。
4.无穷级数
(1)数项级数敛散性的概念及基本性质;
(2)正项级数收敛的充分必要条件、比较原则、比式判别法、根式判别法与积
分判别法;
(3)一般数项级数绝对收敛与条件收敛的概念及其相互关系,绝对收敛级数的
性质,交错级数的莱布尼兹判别法,一般数项级数的阿贝耳判别法和狄立
克雷判别法;
(4)函数项级数一致收敛性的概念以及判断一致收敛性的Weierstrass判别法、
Cauchy判别法、Abel判别法和Dirichlet判别法;
(5)幂级数的收敛半径、收敛域的求法,幂级数的性质与运算;函数的幂级数
展开及幂级数的和函数的性质与求法;
(6)周期函数的Fourier级数展开及Fourier级数收敛定理。
5.多元函数的微分学与积分学
多元函数的偏导数和全微分的概念、几何意义与应用,连续、可微与可偏
导之间的关系,多元函数的偏导数(包括高阶偏导)与全微分的计算,方
向导数与梯度的定义与计算;
(2)多元函数的无条件极值、中值定理与泰勒公式;
(3)隐函数存在定理及求隐函数的偏导数;
(4)曲线的切线与法平面、曲面的切平面与法线的求法;
(5)重积分、曲线积分和曲面积分的概念与计算;
(6)格林公式、高斯公式和斯托克斯公式及其应用。
6.含参变量积分
(1)含参变量正常积分的概念及性质;
(2)含参变量反常积分一致收敛的概念及其判别法,一致收敛的含参变量反常
积分的性质及其应用。
考试题型
填空题、单项选择题、计算题、证明题。
四、考试方法和考试时间
采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟。
主要参考教材
数学分析:《数学分析第五版》,上、下册,华东师范大学数学科学学院编,高等教育出版社,2019