您的当前位置: 首页 > 复习备考 > 公共课备考 > 考研数学 > 正文

2023暨大考研:高等数学第一章学好很关键

作者:鸿知考研网 来源:jnuyan.com 浏览:2067 次 发布时间:2022/2/10

QQ:3007473871(范老师)    微信号:kaoyan818(布布学姐)


【暨大考研微信扫一扫

======分割线======

基础阶段,我们的目标是三基本:基本概念、基本定理、基本方法,因此在基础阶段学习极限应从两个方面着手,一是极限的定义,二是极限的运算。极限的定义在考试大纲中明确要求是理解,理解的意思并不是会背诵定义内容,而是能够领会定义内容背后的所蕴含的含义,正确理解所代表的任意小以及代表的距离。

除定义本身以外,极限的趋近状态也要注意区分,对于函数来说有六种趋近状态:各自的含义要非常清楚,而数列只有一种趋近状态,虽然没有指明,但是数列里边的隐含之意为 。

极限的计算则需要首先掌握考研数学要考到的七种基本方法,知道七种方法适用的情况。第一种是四则运算,此方法大家最为熟悉,但比较容易出错,需要注意使用四则运算的前提是进行运算的函数极限必须都是存在的第二种是等价无穷小替换,这一方法比较受欢迎,而且很多极限计算的问题只需经过等价无穷小代换就能得出结果,不需再使用其他方法,需要注意的是等价无穷小代换前提必须首先是无穷小才可代换,另外只能在乘积因子内代换(有些是可以在加减因子中代换的,但是在没有十足把握的情况下应避免使用在加减因子中代换)第三种是洛必达法则,适用于及 型未定式,在使用的过程中需要注意一下几点:1、洛必达法则必须结合等价无穷小使用2、使用一次整理一次3、其他类型未定式需要转化成 及 型才可以使用洛必达法则等第四种是泰勒展式,这是解决极限问题的利器,在基础阶段不必要求掌握如何使用,只需了解泰勒展式的内容即可,具体使用原则会在强化阶段给出第五种是夹逼定理,主要用于解决含有不等式关系的极限问题,特别应用于 个分式之和的数列极限问题,经过放缩分母来达到出现不等关系的目的第六种是定积分的定义,与夹逼定理相区别,夹逼定理解决的问题放缩分母后分子可用一个式子去表示,而定积分的定义可解决夹逼定理不能解决的问题,经过主要的三步:1、提取,2、凑出,3、极限符号及连加符号改写为,改写为,改写为计算定积分即可解决个分式之和的数列极限问题第七种方法是适用于数列极限的单调有界性定理,难点在于如何确定证明方向,一般单调有界性定理适用于由递推公式给出的数列极限问题,因此可采取数学归纳法证明有界性,做差的办法证明单调性。

  

==========分割线==========

2025暨南大学考研学长学姐1对1高分辅导


  • 在线咨询
  • QQ咨询

  • QQ号:1075383148
  • 电话咨询

  • 1对1辅导,198/课时
  • 电子邮箱

  • kaoyan818(微信号)